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OF STOCHASTIC BIFURCATION 
OF FLEXURE OF IMPERFECT PLATES* 

S.I. VOLKOV 

Flexural stability of thin, rectangular (in the plane) hinged platesis investigated 
for the case when the initial deflections of their middle surfaces fromtheirperfect 
shape, form an ensemble with quasigaussian probability measure, and the total de- 
flection is described by the K&m&-type equations /l/. The external normal forces 
and displacements of the point on the contour of the middle surfaceareassumedgiven. 
A functional method (**) is used, based on the following: a probability functional 
which is a generalization of the probability density, induced by the measure of 
probability of the initial flexures and by the operator of the problem, is construct- 
ed on the set of possible forms of flexure. The instability is related to the 
branching of the modes of this functional. Additional assumptions of smallness of 
the dispersion and correlation scales of the initial deflections are also made. The 
Galerkin method is used to determine small solutions of the equation attheextremal 
of the probability functional. Simple relations are derived, which can be used to 
find the values of the loads corresponding to the instances at which these solutions 
branch off from the trivial solution. It is shown that up to the instant of first 
branching the trivial extremal is the only mode of the probability functional. Be- 
ginning from that instant, the probability functional attains its maxima at other 
extremals which have branched off the trivial extremal, and these extremals are re- 
garded as the fundamental forms of loss of stability. 

1. We consider a thin elastic plate with random initial deflections of itsmiddlesurface 
fromtheperfect form. We assume that at any instant of the loading the hinged edges of the 
plate lie in the plane of the supporting contour. Let the plate occupy (in the plane) a re- 
ctangular area D in R2, with sides of length a and b. We direct the coordinate axes Ox and 
Oy along these sides, and apply to the plate a variant of the nonlinear theoryofshellsbased 
on the Kirchhoff-Love hypothesis /l/. The boundary conditions corresponding to this variant 
include the conditions for the external forces and displacements of the points on the contour 
of the middle surface. We assume that the plate is compressed by an external force p >- 0 di- 
rected along the Or-axis. We specify the displacements of the points on the middle surface 
contour along the straight lines z = 0. (L, in the form of a linear function of the coordinate 
y with angular coefficient Y((p/E), and along the straight lines Y x- 0. b as a linear function 
of the coordinate 2 with angular coefficient p/b’(bt is the Poisson's ratio and E isthemodulus 
of elasticity). 

We write the stress function at the middle surface in the form of a difference 

@" (5, Y) = @'1 (2, Y) - PXV2 (1.1) 

According to the boundary conditions adopted for the forces and displacements, the function 0, 
and its second order derivatives with respect to the inward normal 0 to aD, all vanish on 
8D (3D is the boundary of the region D). Let us eliminate the stress function (1.1) from the 
K&m&-type equations for the plate with initial flexure o,(r) T= <ti"(r,Y) /l/. For the function 
of the total flexure o (r) = 0 (x, y) we obtain 
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N Ir; co. co,,1 w (r) r= A? a0 (r) (1.2) 

@ Ir: (i I = \ drug (r, rd Iu (rd, 21 (741 
iJ 

lu (rl. f! (r)l u,xq,;t, ’ q,!r’..% ~ 211x,,cpr,, 

Here n']r; 0). (OO] is a nonlinear operator, A% is a bihamlonic operator, g (r.rJ is the kernel of 
the Green's operator inverse to A” inD under the boundary conditions analogous to the bound- 
ary conditions for Q1, dr ‘~ dxdy is an area element on D, h is the plane thickness, d is 
cylindrical rigidity and the expression F]r; U] means that F is a function of the coordinates 

x, y and a functional of the field u(r) = u (I, y). 
Let the probability measure of the initial flexures w,, resemble the Gaussian measure in 

the sense of representing the higher correlation moments in terms of the lower moments. We 
assume that the random field (0" (r) has zero average value, low dispersion and small correla- 
tion scales correlated with each other in such a manner that the requirement of the root mean 
square shallowness of the initial middle surface is fulfilled. Then from the Chebyshev in- 
equality we have, probabilistically, 

cf, lr; O)J =z (Q [r; OJ) (1.3) 

Here the square brackets denote averaging over the ensemble of realizations of the initial de- 
flections wO. 

Let us replace, in the second formula of (1.2), the function I$ [r; 0~1 by its approximate 
value according to (1.3). This yields an expression defining a quasiergodic approximation of 
the operator N Ir; w, 0~1. We denote this approximation by N Cr. WI. For the total flexures o 
the first equation of (1.2) assumes, after replacing N [r; 0. a,,] by N [r; WI, the form of an 
equation with a stochastic source in the right-hand side 

N Ir; WI (0 (r) 7 A%O1, (r) (1.4) 

We supplement this equation with the boundary conditions on the contour aD, following from 
the assumption that the plate is hinged 

(0 7~ cl'0 '#2 : 0 (1.51 

and investigate the stochastic stability of the imperfect plates with help of the nonlinear 
equations (1.4) and boundary conditions (1.5). 

2. Let o [r; o,] beasolution of (1.4),(1.5), functionally dependent on the concrete real- 
ization of the initial flexure o. (r) . We introduce the characteristic functional 

Y IO1 = (exp (i dro [r; 0~1 I3 (r))) 
s (2.1) 
LJ 

and the linear response functional 

Here X(r) is the deterministic additional to oO (r) in the right-hand side of (1.4). The sim- 

ilarity between the probabilistic measure of the deflections oO and the Gaussianmeasuremakes 
it possible to obtain from (1.4), using the known methods /2,3/, a closed system of equations 
in variational derivatives connecting the functionals (2.1) and (2.2). Let S2 denote the set 

of possible forms of flexure with given boundary conditions (1.5). We shall represent an 

element of this set by a Fourier series in eigenfunctions fkj(r) of the linearized (at wO 7 0) 
boundary value problem (1.2), (1.5) 

O(r) = F.Z Gjfkj (4 
3 

(2.3) 

The characteristic function Y('lxm) of the coefficients 0h.j (Ic = 1. . ., n; j = 1, . ., m) has, by 
definition, the form of a Fourier integral of the compatible n X m-dimensional probability 
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density P(“x’“) of the qUaMititeS (I)kj. Here the role of integration measure is played by the 

"volumell element dl/(nxml of the possible values of the coefficients akj in the Euclideanspace 
Rnxlrl . 

We assume that there exists, if only formally, a limit of the sequence of such integrals 

when n--too and m-m. Let us change the integration measures at the instant of the pas- 
sage to the limit. Using the linear transformation (2.3), we pass from the integration over 
the measure in the space of possible values of the coefficients (O/<j, to the integration over 

another measure, namely an analog of "volume" in the space of functions o(r) of & defined on 

u. For the change of the measures (variables) of integration at the instant when the quant- 
ity Y(nrrnI attains its formal limit as li+ m,nz+ 00 , we have the corresponding passage from 
the finite-dimensional probability density p'*x"') of the quantities Wkj, to its infinite- 
dimensional generalization represented by the probability functional P [o] defined on the set 
9. Let us denote the above measure in the space of functions o (r) in 9 by p 10 (r)~ 521. 

Then we have the corresponding symbolic equation 

&‘cY’“‘pc”x”: = dkl [w (r) E a1 P [Wi 

Using this equation we can write the formal limit of the sequenceofthequantities Wnxm) 
in the form of the following continuous integral 

(2.4) 

The integral (2.4) represents the infinitely-dimensional Fourier transform of the generalized 
probability density P[oJ of the random field o (r)E Q (of the generalized random process ac- 
cording to be terminology of /4/j and is used, together with the expression (2.1), as the 
means of determining P [o]. Below we show that the convergence of the integral (2.4) depends 
on the stability of the initial physical system, just as the continuous integrals of the Bose 
quasiprobabilistic theories /5/. 

Applying the transformation (2.4) to the equations for the functionals Y[O] and G (r, r’; 

El), we obtain the following closed system of equations for determining the probability func- 
tional P [a]: 

N [r: (4 0 (r) P loI = - ( drl \ drz {F (r, rJ x & (JJ Irn. r,: (01 P 1~1)) (2.5) 

iJ b 

N[r:(o]r[r,r’;to] -i_ Cdr,,[~r[rl,r’;w]}=~(r,r’) 

b 

F (r, r’) = \” drl \ drz {g-’ (r, r,) K (r, ri) g-l (r2, r’)) 
b b 

K (r, r’) = :a (r) wlj (r’)) 

Here r [r,r'; 01 is the response function to an infinitesimal load added to the right-hand side 
of (1.3)) and 6 (r, r’) is the b-function defined in D and connected with the boundary condi- 
tions (1.5). The expressions (2.5) should be supplemented by the normalizing and non-negativ- 
ity conditions 

(2.6) 

Let the integral operation with the kernel F(r,r') defined on the set W-J B of functions 
given in D and satisfying the conditions (1.5), be nondegenerate. Then the equations (2.5) 
have the following functional on Q, whose solution satisfies the conditions (2.6): 

P [o)l = c 1 IIPI p(cd)] 1 x exp - L- [ 2 ( dr 5 drl [(N Ir: (01 (1) (r)) F-l (r: rl) (N [rl; CO] <I) (r,)) I] 
L u 

(2.7) 

Here Det [r-l (a)] is the Fredholm determinant of the integral operation with kernel P[r, r’; o] 

defined on W. The constant C can be found from the first condition of (2.6). The condition 
of local extremum demands that the variational derivative of the functional P [a] vanishes on 
the extremal o = o*. Equating such a derivative in the first expression of (2.5) to zero,we 
obtain the equation for the functional (2.7) on the extremal o* (r) 

N [r; co*] o* (r) = \ dr, . 
b 

. . \ dr4 p (r, rl) 
b 

x r Irz, cc %I (&r-l Irs, r4; 4) lo=o r Irl, rl, ql * (2.8) 
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The right-hand side of this equation contains a real nonanalytic operation with kernal l'lr. r'; 
CO*]. However, from (2.7) it follows that the matrix I'-'[r, r'; co*1 degenerates only in those 
realizations of its functional argument o*of Q, which have zero probability. The operators, 
the kemals of which form the matrices l- Ir, r'; lo*1 , are bounded in probability; and so are 
the derivatives of the right-hand side of (2.8) with respect to the functional argument 0~~ (r) 
or some other parameter of the problem. 

3. Let us write P ~= PO 7- V. Let 

Det IF-l (co)1 lo=, # 0 

in the small neighborhood of PO_ Then the terms of the equation (2.8) can be expanded in 
powers of v and w*(r) with nonzero probability. Taking into account the principal terms of 
this expansion only, we obtain (using the notation u(r) m-z o*(r)): 

B (r, PO) u (r) = H [r; ul im (3.1) 

13 (r, po) u (r) = (Aa t $!!. 2) I( (r) ~ T [u (r), (0 Ir; 001>1- \; drl \ dr3 (r, rd VO 0-4, h PO) X 
L b 

rl Cm, rl, rz, r5) u (13 r. (IL rlr pd) 

Here B(r, [I,,) is a linear operator, and rl is a vertical kernel determined from the expression 

The function I', (r, r’, po) is equal to r[r. r’; CO = O] for P =Po and is, in general, bounded 
probabilistically. Let us denote by (am the zeros of the operator n(r, PC,). Under the con- 
ditions (1.5) the zeros will be represented by the nontrivial solutions of the linearequation 

N (rr PO) u (r) ~ 0 (3.2) 

We denote by PO,,, the values of the parameter p. corresponding to the instances of noninvertib- 
ility of the operator ~(r, po). When K (r,r’) are sufficiently small, the problem (3.2), (1.5) 
admits, within the framwork of the Galerkin method, the approximate solutions qrn (r) = /hj cr) 

where 
fki (r) = 2 (cd)-‘l sin ($) sir) [y) 

The instances of noninvertibility corresponding to these solutions occur when po = hi where 

T X, -“+--f-. !,. v. t = , (Q’ _ p) v(4u? - t') 

.I[,, j = \ drfhj (4 (Loo 09, (00 @‘)I) 
u 

The quantities K '.-. klhl represents the coefficients of expansion of the correlation function 

K(r, r’) of the initial deflections, diagonal with respect to the pair (k, j) of indices, over 

the system {f&j (r)}. 

Let the quantity PO = poll,= &j have only a single corresponding zero of the operator 

B (r, PO). Then in analogy with the nonlinear equations with operators in Banach spaces /6/, 
the first equation of (3.1) admits the solution 
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u (r) z qfk, (r) + Hii 1 drlg (r, rl) H in; ul 
u 

q= drrr (r)fh_j (r) s 
n 

(3.4) 

where Rk;' is a Green's operator which can be transformed, under the conditions (1.5), to its 
inverse &j . The operator Rki is given by the expression 

Rkju (r) = 1 drl I(fkj @‘I fkj @‘I) + g (r, rl) 8 (rlr PO = *Ikj)) U (rl)l 
D 

Following /6/, we construct for the parameter n, so called branching equations 

(3.5) 

From (3.4) and (3.5)it follows that the following forms of flexure represent small appropriate 
solutions of (2.8): 

o* (9 = u* (r, P - hj) = * Bfkj (r) (3.6) 
fj = [Lkj(l) (P - Akj) 1 &j(9)I-‘]v: 

The above forms branch off the trivial solution at the instant when the loading parameter at- 
tains the value p = 4,. Setting in (3.2) K = 0, we obtain a known expression determining the 
moments of bifurcation of the trivial solution of the deterministic problem (oO = 0). 

4. The second variation of the functional S [o] = -ln(C-*P [o]) near o = 0 is a simple 
quadratic form 

c cm (PI ce*2, 6), = s drop, (r) 61 (r) 
m ” 

The quantities c,(p) are the eigenvalues of the operator appearing in the left-hand side of 
the equation 

The solutions of (4.2) coincide probabilistically with the zeros mnr (r) oftheoperator R (r. pO). 
The quantities cm(p) are greater than zero when P <Porn, vanish when (, = PO,,, and become neg- 
ative when p >pom. This means that the form (4.1) is positive definite in the region 0 < 
P<Pon’ (Pan’ represents the smallest value of PO,,, and is approximately equal to the smallest 
A,,'of Akj), and sign definite from the moment P -PO,,‘. Within the framework of approximations 
used, and for sufficiently small P- (PO,,‘= A,,‘)> 0, the second variation 6's fo] is positive 
in the neighborhood of the deflections (3.6): o = u+(r, p- A,t’). It follows thereforethatthe 
probability functional P IO] has a unique maximum at the deflection o = 0 up to the moment 

P = Pan ‘z A,,'when the trivial solution of (2.8) branches for the first time. The maximum pas- 
ses, at this instant, into new maxima situated approximately at the deflections o = uc(r,p _ 
A,'). This is an example of stochastic bifurcation, The fact that the convergence of the in- 
tegral (2.4) is violated at the instant the load parameter attains the value P = p.,,,‘, i.e. at 
the instant when the stochastic system loses its stability, is a particular feature of this 
phenomenon. Indeed, up to the instant p == pan’ the functional S]w] has a single extremum, i.e. 
a minimum at the deflection o = 0 (S]o]is concave in the downward direction 8*Slo] > 0) near 
this deflection). This implies that the functional Slo] increases without bounds when o(r) -+ 
? P , and the exponential term in the right-hand side of the symbolic equation 

Q lo (r) E Ql~'lol = &I [w (r)= bljc-'exp (--s[o]) (4.3) 

is found to be, at large lo(r) ],a truncating term, and this leads to convergence of the in- 
tegral (2.4) (the convergence is easily established within the framework of the perturbation 
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theory in which, following /7/, we take the Gaussian term of the functional Plwl as the in- 
itial approximation). In the infinitely small neighborhood of p =pon' the exponential term in 
the right-hand side of (4.3) loses its truncating properties, and the integral (2.4) does not 
converge in this case. The truncating properties of (4.3) appear only when the difference 
p -pPon' exceeds the value of the infinitely small positive number E forming the part of the 
divergence interval of (2.4) lying to the right of 11 Pan'. Here the integral in questionagain 
becomes convergent. 

We note that the dispersion of the deflections D) [r;oJ which can be determined in the 
region 0 <p < pan'= A,( using the Gaussian approximation to the probability functional /'[WI, 
increases sharply from below as p - A,(, and the characteristic dimensions of the correlations 
~~1 [r;oOl approach those of the term 

h',f,,lf,f (r)i.,t (r') 

of the expansion of the initial deflection correlation function h'(r,r') over the system {h.j(r)). 
The deflections o = u &(r,p - A,,') form two basic forms of the loss of stability. 
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